

SANDIA REPORT

SAND
Unlimited Release
Printed

Uniprocessor Performance Analysis of a
Representative Workload of Sandia
National Laboratories' Scientific
Applications

CHARLES LAVERTY

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by

Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any of

their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors. The

views and opinions expressed herein do not necessarily state or reflect those of the United States

Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

UNIPROCESSOR PERFORMANCE ANALYSIS OF A REPRESENTATIVE

WORKLOAD OF SANDIA NATIONAL LABORATORIES’

SCIENTIFIC APPLICATIONS

BY

CHARLES LAVERTY, B.S.

A thesis submitted to the Graduate School

in partial fulfillment of the requirements

for the degree

Master of Science in Electrical Engineering

New Mexico State University

Las Cruces, New Mexico

June 2005

 ii

“Uniprocessor Performance Analysis of a Representative Workload of Sandia

National Laboratories’ Scientific Applications,” a thesis prepared by Charles

David Laverty in partial fulfillment of the requirements for the degree, Master

of Science in Electrical Engineering, has been approved and accepted by the

following:

Linda Lacey
Dean of the Graduate School

Jeanine Cook
Chair of the Examining Committee

Date

Committee in charge:

 Dr. Jeanine Cook, Chair

 Dr. Erik DeBenedictis

 Norris Green

 Dr. Steven Stochaj

 iii

VITA

February 26, 1980 Born in Taos, New Mexico

1998 Graduated from Cimarron High School,
 Cimarron, New Mexico

1998-2002 B.S, New Mexico State University, New Mexico

2002-2005 Graduate Assistant
 College of Engineering
 New Mexico State University

Field of Study

Major Field: Electrical Engineering (Computer Engineering)

 iv

 ABSTRACT

UNIPROCESSOR PERFORMANCE ANALYSIS OF A REPRESENTATIVE

WORKLOAD OF SANDIA NATIONAL LABORATORIES’

SCIENTIFIC APPLICATIONS

Master of Science in Electrical Engineering

New Mexico State University

Las Cruces, New Mexico, 2005

Dr. Jeanine Cook, Chair

Throughout the last decade computer performance analysis has

become absolutely necessary to maximum performance of some workloads.

Sandia National Laboratories (SNL) located in Albuquerque, New Mexico is

no different in that to achieve maximum performance of large scientific,

parallel workloads performance analysis is needed at the uni-processor level.

A representative workload has been chosen as the basis of a computer

performance study to determine optimal processor characteristics in order to

better specify the next generation of supercomputers. Cube3, a finite element

test problem developed at SNL is a representative workload of their scientific

workloads. This workload has been studied at the uni-processor level to

understand characteristics in the microarchitecture that will lead to the overall

performance improvement at the multi-processor level. The goal of studying

 v

this workload at the uni-processor level is to build a performance prediction

model that will be integrated into a multi-processor performance model which

is currently being developed at SNL. Through the use of performance

counters on the Itanium 2 microarchitecture, performance statistics are

studied to determine bottlenecks in the microarchitecture and/or changes in

the application code that will maximize performance. From source code

analysis a performance degrading loop kernel was identified and through the

use of compiler optimizations a performance gain of around 20% was

achieved.

 vi

TABLE OF CONTENTS

LIST OF TABLES ...viii

LIST OF FIGURES...ix

1. INTRODUCTION...1

2. BACKGROUND...2

2.1. Computer Performance Analysis..2

2.2. Intel® Itanium 2® ...7

2.2.1. Performance Monitoring Unit ..10

2.3. PERFMON ...11

2.4. Vtune..14

2.5. Trilinos ...14

2.6. Finite Element Method ...16

2.6.1. Overview ...16

2.6.2. Assembly ..19

2.6.3. Preconditioning/Solution ...23

2.6.4. Finite Element Example ..25

2.7. Sparse Matrices ...36

2.7.1. Storage Schemes..36

3. RELATED WORK..40

3.1. Performance of Sparse Matrices..40

3.2. Finite Element Research..41

3.3. Itanium 2 Performance Studies ..43

 vii

4. THESIS PROBLEM...44

5. WORKLOAD ...45

5.1. The “Cube3” Application...45

6. METHODOLOGY ..49

7. RESULTS..54

7.1. Problem Size..54

7.2. Runtime Description...57

7.2.1. Cube3 Phases...57

7.2.2. Varying The Shape of Cube3 Problem............................59

7.2.3. Varying Storage Techniques...62

7.2.4. Runtime Statistics ...63

7.3. Bottleneck Analysis ..66

7.4. Solution Techniques...68

7.4.1. Varying Solvers ...69

7.4.2. Vary Preconditioners...70

7.5. Compiler Optimizations ..73

7.5.1. Utilizing different Compilers ..73

7.5.2. Loop Optimizations ...75

8. CONCLUSION ..78

9. FUTURE WORK..80

APPENDIX ...82

REFERENCES...92

 viii

LIST OF TABLES

1. Itanium 2 Cache Configurations ..9

2. Example Matrix for Sparse Storage Schemes.................................37

3. Example Sparse Matrix Coordinate Format Storage.......................37

4. Example Sparse Matrix CRS Format Storage.................................38

5. Example VBR Matrix ...38

6. Example VBR Storage Matrix..39

7. Block Representation of Matrix ...39

8. Itanium 2 Stall Counters..52

9. Problem Sizes for Figure 20..56

10. Crs Cache Statistics..65

11. Crs Stall Source ..66

12. Crs Execution Stage Stalls..67

13. Crs Global Stall Counts...68

14. Crs Major Stall Contributions...68

 ix

LIST OF FIGURES

1. Processor Memory Hierarchy.. 4

2. Itanium 2 Processor Pipeline... 8

3. Itanium 2 Microarchitecture Features.. 9

4. PFMON Usage.. 12

5. Sample Output of PFMON .. 13

6. Element Types .. 17

7. Assembly Example Problem ... 20

8. Connectivity List .. 20

9. Element Contributions... 21

10. Assembly Process... 21

11. Beam Representation and Matrix Graph... 23

12. Plate Representation and Matrix Graph .. 23

13. Cosmos Example .. 25

14. Cosmos Elements ... 25

15. Cosmos Final Solution .. 26

16. Thin Plate Example ... 27

17. Thin Plate Nodal Coordinates ... 30

18. Hexahedral Element.. 46

19. 3x3x1 Hexahedral Elements ... 47

20. Vary Width CRS -IPC, L2&L3 Cache Stats 56

21. Cube3 Call graph .. 57

 x

22. 55x55x1 Interval IPC... 58

23. Call graph Mapping to Interval IPC ... 59

24. 1x45000 Interval IPC... 60

25. 300x1x1 Interval IPC... 60

26. Vary Shapes - Interval IPC.. 61

27. Crs and Vbr Methods 55x55x1 with Gmres Solver.......................... 63

28. Crs Instruction Mix .. 64

29. Crs 55x55x1 Varying Solver Methods ... 71

30. Crs 55x55x1 Varying Preconditioners with CG solver..................... 72

31. Crs 55x55x1 Varying Gcc & Icc Compilers...................................... 74

32. Gcc with Gmres Solver vs. Loop-Unrolling...................................... 77

33. Gcc with CG Solver vs. Loop-Unrolling ... 77

 1

1. INTRODUCTION

High performance computing has always been an integral part of our

National Laboratories. As of November 2004, out of one hundred of the

fastest computers in the world around twenty percent of them are located on

National Laboratory grounds [1]. The workloads used on these

supercomputers are scientific in nature, simulating various scientific

phenomena such as projectile collisions and nuclear detonation, many of

which the government uses to simulate physical problems that are not

feasible to test in the real-world. Microarchitecture improvements can help to

reduce the extensive runtime of these simulations. Performance analysis of

these workloads is used to determine where bottlenecks occur in various

microarchitecture components and/or where improvements to the application

code will result in decreased execution time. From the various methods of

performance analysis a study has been conducted on a representative

workload of SNL’s scientific applications. This study will aid in understanding

the workload behavior throughout all phases of its execution and aid in

identifying the causes poor performance, hopefully generating incite that will

lead to changes in hardware or software, that enables speedup of these types

of applications. These studies will provide the necessary information to

enable generation of an analytic performance model at a uni-processor level

which will be implemented in another multiprocessor model to help in the

decision of future computing efforts at SNL.

 2

2. BACKGROUND

A few concepts need to be understood in order to understand the

performance of this representative workload at SNL. This section discusses

the background concepts needed to understand the results presented in

Section 6. This section is organized by presenting a short background to

computer performance analysis in Section 2.1. Then a background of the

microarchitecture of the Intel Itanium 2 architecture, which was the

architecture that this analysis was conducted on, will be presented in 2.2.

Section 2.2 and 2.3 will discuss some of the tools used to collect

miscellaneous statistics in the performance study. Finally in Sections 2.5-2.7

discussion on background of the actual workload will be presented in order to

help understand its performance characteristics.

2.1. Computer Performance Analysis

Computer performance analysis is the art of studying various

workloads on different architectures to understand what can be done to

maximize the performance of the workload on a specific architecture or to

understand what architecture executes the workload the fastest and why. The

main statistics that are studied for computer performance analysis are

instructions per cycle (IPC) or cycles per instruction (CPI), execution time, as

well as cache statistics, and stall statistics.

IPC is the number of instructions completed per cycle averaged over

the entire application execution. For example, if two different processors

 3

running the same application complete one instruction per cycle (max IPC per

machine is one) and if the workload takes 1000 instructions to complete and

on one processor it takes 2000 cycles (amount of time based on clock

frequency) and takes 1000 cycles on another machine their IPC’s are 0.5 and

1, respectfully. This states that the second processor is better due to the fact

that it utilizes its architecture better even though the execution time (clock

time) could be slower. So the combination of these two statistics is a major

determination of how a processor performs.

Modern day microarchitectures have the ability to complete more than

one instruction per cycle due to various architecture innovations such as the

addition of multiple pipelines. Pipelines allow architectures the ability to break-

up the execution time of an instruction into smaller pieces allowing for faster

clock frequencies and for various pieces of different instructions to be in the

pipeline at a single time. Performance degradation of these pipelined

architectures comes from stalls in the pipeline, which occurs mainly when

data is being brought in from disk or memory which is much slower than the

processor. That is why cache statistics are also important in studying

performance of architectures. Caches are small fast memory that help speed

up the data access of disks or memory. The memory hierarchy of a

contemporary computer is shown in Figure 1 where the registers are the

closest to the CPU and the secondary storage is further away from the CPU.

Figure 1 Processor Memory Hierarchy

The hierarchy starts with the slower secondary storage which runs at a speed

of around 8ms and a bandwidth of around 20MB/sec [2]. The next level, main

memory, runs at a speed of around 50ns and a bandwidth of 100MB/sec. The

faster on-chip memories called cache run at a speed of a couple of

nanoseconds and have a bandwidth in the gigahertz range. The highest level

of the memory is the processor registers which run the fastest at around sub-

nanosecond and at gigahertz bandwidth. The slower memory also is the

cheapest as compared to the expensive on-chip registers and cache.

Many processors try to conceal the performance degradation

contributed by the slow access time of caches by hiding the latency involved

with a memory access. This is achieved by the use of processors that

execute instructions out-of-order. This allows instructions following an

instruction that is waiting for data to be computed while that instruction in

waiting. When the instruction has its data from memory then the instructions

are reassembled back to their program order. The key factor to hiding the

 4

 5

latency of a memory access comes down to the available parallelism within

an application. In other words, if an instruction can not execute out-of-order

then it is dependent on a previous instruction and if that previous instruction

can not complete because it is waiting for one of its operands to be brought in

from memory it also has to wait. There are always limits to the parallelism that

can be extracted within an application due to the nature of its implementation.

The use of various performance analysis techniques enables

designers to optimize the hardware design to excel performance of some

workloads. There are three main approaches to performance analysis:

Analytic methods, Simulation methods, and Direct Measurement methods.

Analytic methods are techniques by which the behavior of the

microarchitecture components is represented by mathematical equations or

queuing models. The advantage of using analytic modeling is the time to

achieve an answer is very small but it is very difficult to represent the

behaviors and interactions of complex structures of modern day architectures

because of their complexity. So the accuracy of such models is very limited.

Another method of performance evaluation is through the use of

simulators. Simulators are very useful in performance analysis due to their

robustness. However, a simulator is very difficult to implement because it is

modeling a real world machine through software, making the development

time costly. The accuracy of a simulator is always a concern because it is

very difficult to model a processor through software. Most simulators provide

 6

the designer with many performance metrics and simulator code can be

modified to incorporate any changes to the microarchitecture that the

designer desires such as modifying the cache organizations, memory

bandwidth, and queue sizes. Simulators have one major drawback and that is

the execution time. The runtime of an application on a cycle-accurate

simulator usually takes 100 to 1000 times the native applications execution

time.

The last of the performance analysis tools is direct measurement of

physical systems. Through the use of on-chip hardware counters

performance data can be collected during native execution of an application

as well as during operating system activity. The problem with hardware

counters is that in most modern computers processor real estate is limited

and thus there are typically only four to eight counters that enable the study of

an application, which leads to very limited performance studies. Also, there

are some variations between runs of the same application due to overhead

involved with the operating system and cache activity but normally is less

than 0.5% error between runs.

In this paper the majority of the performance analysis is done through

the use of hardware performance counters. Intel’s® Itanium® 2

microarchitecture provides one of the most extensive performance monitoring

units for capturing performance data. The next section provides an overview

of this architecture.

 7

2.2. Intel® Itanium 2®

The Itanium 2 microarchitecture was a collaborative effort between HP

and Intel and was released in July 2002. It is a 64-bit, VLIW (very long

instruction word) architecture executing up to six instructions at a time. The

VLIW in the Itanium 2, consists of groups of three instructions; these groups

are called bundles. The three instructions in a bundle are independent and

can, therefore, execute in parallel on the multiple functional units in the

Itanium 2. It has four floating-point units, two capable of executing one FMA

per cycle while the other two perform other floating-point operations such as

comparisons, but only two floating-point operations can be executed in

parallel [3] . Also the Itanium 2 has two integer, three branch, and four

memory execution units in its parallel execution pipelines, for a total of 12

functional units. The Itanium 2’s pipeline is shown in Figure 2. Each

instruction bundle is encoded by the type of resource that can execute in

parallel (i.e. memory, floating-point, and branch instructions comprise a MFB

bundle). The Itanium 2 issues two bundles per cycle to its in-order core.

Through the use of VLIW technology, the Itanium 2 does not need a

complex out-of-order pipeline to achieve performance improvement, allowing

the architecture real estate to be used for a more complex memory system

and a large set of architectural registers. The VLIW places much

responsibility on the compiler to achieve the maximum instruction throughput.

The microarchitecture highlights are shown in Figure 3 [4]. The cache

configurations of the Itanium 2 processor used in our studies are listed in

Table 1. The cache hierarchy of the Itanium 2 populates most of the area on

the chip since the processor core is smaller for an in-order processor

compared to out-of-order cores normally used in today’s microcomputers.

Overall, the Itanium 2 is a good choice for running the performance analysis

of this representative application of SNL’s scientific applications because of

the large caches, the high performance of scientific applications cited in

various studies, and the large number of performance metrics that the

performance monitoring unit allows for collection which is discussed in the

next section.

 8
Figure 2 Itanium 2 Processor Pipeline

Figure 3 Itanium 2 Microarchitecture Features

Table 1 Itanium 2 Cache Configurations
 L1D L2 L3

Access Time 1 5+ 12+
Size 16 KB 256 KB 1.5MB

Line Size 64 bytes 128 bytes 128 bytes
Number of Lines 256 2048 24576
Associative Sets 4 8 12

Sets 64 256 2048

Update Policy
Write-

Through
Write-
Back

Write-
Back

Banks 8 "groups" 16 1

Line
Replacement

Not
Recently

Used

Not
Recently

Used

Not
Recently

Used

 9

 10

2.2.1. Performance Monitoring Unit

The Itanium 2’s performance monitoring unit (PMU) is an important

component of the architecture that allows a developer to tune their code to

achieve maximum performance through the use of hardware performance

counters. The PMU has the ability to track counts of around 500 different

metrics which are collected on four different hardware counters. The metrics

that can be counted range from simple memory statistics (misses, references,

etc.) to branch miss-prediction rates to complex opcode matching (shown

below). The Itanium 2’s PMU is one of the most complex ever implemented

which influences our choice of this architecture for performance analysis. One

advantage to using the Itanium’s PMU is its bubble counters that can be used

to understand the major contributions of all stalls throughout application

execution. A detailed explanation of the bubble analysis is included in Section

6.3. The events that the PMU can monitor can be broken down into various

categories [5]. These categories are:

• Basic Events: Clock cycles, retired instructions

• Instruction Dispersal Events: Instruction decode and issue

• Instruction Execution Events: Instruction execution, data and

control speculation, and memory operations.

• Stall Events: Stall and execution cycle breakdowns.

• Branch Events: Branch prediction.

• Memory Hierarchy: Instruction and data caches.

• System Events: Operating system monitors.

• TLB Events: Instruction and data TLB’s.

• System Bus Events: Events on the system bus

 11

• RSE Events: Register Stack Engine.

2.3. PERFMON

There are several software interfaces to the performance-monitoring

unit including HP’s PERFMON and Intel’s Vtune. We chose to use both

although the majority of the statistics were collected using PERFMON

because of its ease of use and its ability to batch process the workload using

the PERFMON software. PERFMON was a project developed by Hewlett

Packard as a standard kernel interface for the Performance Monitoring unit of

the Itanium and Itanium 2 architectures [6]. The software consists of a library

called libpfm and a monitoring tool called pfmon. PERFMON provides full

access to the PMU of the Itanium family of architectures. It provides the ability

to monitor system or per-process sessions, as well as providing the capability

of sampling events or just cumulative counts of the available metrics.

Pfmon has many features in which a user can customize performance

counts. We used pfmon version 3.0 on our system. The basic usage of the

pfmon command is shown in Figure 4. In this example, two metrics are

counted, CPU cycles and instructions retired with the results of each being

436,368 and 513,437, respectively. With performance counters there is

always a deviation from one run to another. For the command shown in

Figure 4 a total of ten runs were completed and the percent error in

instructions was less than 0.01 percent; for the CPU cycles the max percent

error was around 0.65.

Figure 4 PFMON Usage

In Figure 4 the –e specifies the event to be counted (up to four can be

counted at a time) and ls /dev/null is the command to be monitored. Through

the use of -header the output will include output useful information about your

system and the performance session started by pfmon. A sample output

using the –header option is seen in Figure 5. Some of the key information

shown in Figure 5 is the cache hierarchy configuration of the system as well

as how the output data of the sampling session is organized.

Sampling events can be very useful information when studying a

workload because you can determine execution phases within the program

that cause performance degradation. Using pfmon, a sampling period in

which two statistics are used can be specified, one event is used to choose

when to sample the other. For example, the user can specify to sample

CPU_CYCLES every one hundred thousand IA64_INST_RETIRED. From the

number of cycles and the number of instructions, instructions per cycle (IPC)

can be computed. IPC is a composite metric that is used to measure overall

performance of a micro-architecture, which was discussed in Section 2.1.

Figure 5 also shows an example of how to implement sampling (look for

“command”). Plots of such interval data will be shown in Section 6. The PMU

 12

of the Itanium 2 allows for various other software to interface with it such as

Vtune which is described in the next section.

Figure 5 Sample Output of PFMON

 13

 14

2.4. Vtune

Vtune is a performance tool used to tune an application for maximum

performance [7] through the use of profile and call graph results. The call

graph and profile data allows Vtune to sort the functions by actual time spent

throughout execution. This helps to identify sections of code where most of

the execution is spent which are called hotspots. Once the hotspots have

been identified by Vtune, it allows a user to double-click on a function within

the call graph in the graphical user interface and backtrack to the actual

source-code. Vtune also interfaces to the performance counters of the

Itanium 2, Xeon, or Pentium and can perform sampling sessions just as

PERFMON does on the Itanium 2 discussed in Section 2.3. Vtune is used in

this work to help understand the application under study and to help

determine sections of code that are used frequently within that application.

2.5. Trilinos

The applications that simulate large-scale physical systems are very

mathematical in nature requiring the solution of many different linear and non-

linear systems of equations, both time-dependent and independent [8]. At the

core of these types of applications are various mathematical solvers that

implement different algorithms to solve these systems of equations. Scalable

solver algorithms and software development have long been an area of focus

at Sandia National Laboratories. In the past, the development of these

algorithms and applications was done by the individual scientist and each

 15

created their own code even though many codes implemented the same

underlying solver algorithm. The development of these codes was very time

consuming and expensive. The Trilinos Project was created at Sandia to

develop a reusable set of solvers to help reduce development time and

overall expense. The Trilinos Project is a highly evolved system of libraries or

packages that has been created as a basis for future complex application

development and is currently in use at Sandia National Laboratories. Trilinos

is used by many of the scientific applications at Sandia. The representative

workload used in this work also uses the Trilinos set of solvers to solve its

equations.

The various packages used by Trilinos are each independent of one

another although some packages can be used in conjunction with other

Trilinos packages. Some of the packages used in this work include:

• Aztec00 - provides an object-oriented interface the well-known Aztec

solver library. It also allows flexible construction of matrix and

vector arguments via Epetra matrix and vector classes.

• Epetra - provides the fundamental construction routines and

services that are required for serial and parallel linear algebra

libraries. Epetra provides the underlying foundation for all

Trilinos solvers.

• ML - is a multigrid preconditioning package intended to solve large

sparse linear systems of equations arising from primarily

elliptic Partial Differential Equation discretizations.

 16

The representative Sandia application that we use in this work (which is

described in Section 5) primarily uses the Epetra and the AztecOO packages.

The Epetra package is the primary package used to create and fill matrices

used in many scientific applications and the AztecOO package is the primary

solver used in the representative workload. The Trilinos Project and its

packages are described in detail in the Trilinos Tutorial [9], as well as other

Trilinos documentation [10, 11].

2.6. Finite Element Method

The representative workload used in this work makes use of the finite

element method to solve a physical system. Some background in the finite

element method helps to understand the execution of the representative

application,

2.6.1. Overview

The basis of the math used in scientific applications is the use of

Partial Differential Equations (PDE’s). PDE’s are used to model physical

phenomena though the use of equations that describe the relationship of

physical quantities such as forces, temperature, chemical reactions, and

velocity by partial derivatives. If the physical system is very large in nature it is

generally not possible to obtain a solution satisfying the governing PDE’s and

so the process of subdivision of the physical system into smaller portions is

used which is known as finite-element discretization. There are various ways

to discretize partial differential equations. In this work we focus on the Finite

Element Method (FEM), as opposed to Finite Difference and Finite Volume

Methods.

Finite element analysis (FEA) or FEM allows a large naturally occurring

physical phenomenon to be represented by mathematical equations and to be

solved in parts and then combined to solve the entire problem. Through this

divide and conquer scheme a problem is divided into parts called elements

and the regions where the elements connect are called nodes. There are

various ways of constructing elements in a finite element problem. Elements

that are one, two, or three dimensional in nature will show the definition of the

physical object in more or less detail. Figure 6 shows various shapes of

elements in various dimensions. The tetrahedral element is the most widely

used because it can closely model any physical shape whereas the

hexahedral element will best model a rectangular shape.

Figure 6 Element Types

Finite element analysis has six steps in the solution procedure:

1. Discretize the continuum

2. Select interpolation functions

 17

 18

3. Find the element properties

4. Assemble the element equations

5. Solve the global equation system

6. Compute additional results

Once a physical system is realized the first step is to discretize the physical

continuum into elements and nodes, which are stored as element connectivity

lists usually stored in an array. The nodes are the vertices or corners of the

elements shown in Figure 6. The nodal coordinates are also stored in an

array. Step two is to select the interpolation functions that are used to track

various interactions between the variables over the element such as

displacement. Each element is defined using this interpolation function to

describe its behavior between its endpoints (nodes) based on various

equations describing the physical phenomenon. Once the element has been

discretized and the interpolation functions have been realized, the matrix

equations which relate the nodal values to their unknowns for the element

need to be established. Once the equations are established for each element

the assembly process begins in which the global equation is assembled

element by element according to each element’s connectivity list. The global

equation represents the whole physical object that the FEM is modeling.

Before the global equation can be solved boundary conditions must be

implemented which describe the physical force or strains on the physical

object. The global equation is typically a matrix-vector multiply in the form:

}]{[}{ xAf = Equation 1

where A is the matrix that represents the known coefficients and x represents

the unknown values (in vector form). A is also known as the global stiffness

matrix. Once the solution is complete there are times when additional results

other than coordinate displacements need to be computed such as

temperature variations within the original object modeled.

In finite element analysis there are many different solution techniques

and/or ways of generating/assembling the matrices used in the calculations

but all generally result in the same final equation of a matrix-vector or matrix-

matrix multiply [12, 13, 14, 15, 16].

2.6.2. Assembly

The assembly process of the finite element method is the process of

assembling the global stiffness matrix from the individual elements to

characterize the unified behavior of the entire system. This is carried out

using the element connectivity lists, which makes up the global numbering

system of the problem and states how the elements are connected to realize

the actual physical object. When assembling the matrix the contribution of

each element is added to the global matrix. An example of the assembly

process of a linear system with one variable is shown in the following

example.

 19

Figure 7 Assembly Example Problem

Figure 7 is a one dimensional physical system in which there is one

degree of freedom (one-direction, i.e. x-direction). Figure 6 shows the

physical system separated into four elements with five nodes joining the

elements. The connectivity list of the finite element problem in Figure 7 is

shown in Figure 8. Each element has two nodes numbered one and two as

well as a global number associated with each node as shown in Figure 8.

Figure 8 Connectivity List

The element connectivity list shown in Figure 8 states how the

example in Figure 7 will be assembled into a global matrix. Each element will

contribute a 2x2 matrix to the global matrix because each element has two

nodes associated with it. Each element contributes the 2x2 matrix shown in

Figure 9. The value located in (1,1) (e.g., row one, column one) represents

the contribution of node one and the value of (2,2) represents the contribution
 20

of node two for each element. The values in Figure 9 are arbitrary in that the

values were chosen for simplicity to show the assembly process. The

negative values represent the connection between the nodes meaning nodes

one and two are connected in the element.

⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11

Figure 9 Element Contributions

The assembly process takes each individual element’s 2x2 matrix and places

it in the final matrix based on the column/row of the global node number

shown in Figure 8.

Figure 10 Assembly Process

The global matrices shown in Figures 10a-e each have five rows and columns

because the object in Figure 7 has five nodes. When an element has shared

nodes with another element the values associated with that node are additive

 21

 22

em.

iagonal of the matrix. Sparse matrices are described in detail in

Sectio

 on

l of

aph

tant role in performance and behavior of these finite

ms.

in the global matrix (Shown in Figure 10b, c, d). This is also shown in detail in

section 3.6.4. Figure 10a shows the individual contribution of element one to

the global matrix; Figure 10b shows the contribution of element two; Figure

10c shows element three; and Figure 10d shows element four’s contribution.

Each element’s contributions are added to the global matrix. Figure 10e is the

final A matrix which is the global stiffness matrix of the finite element probl

This final global matrix is normally a sparse matrix for large finite element

problems. A sparse matrix is a matrix with few nonzeros usually situated

close to the d

n 2.7.

The global matrix can take on various shapes and orderings based

the node numberings and shape of the physical system. For instance in

Figure 10, the problem shape is a long bar with seven elements and a tota

32 nodes. The graph of the matrix is a narrow banded matrix (Figure 11)

meaning the nonzero values are associated closely to the diagonal of the

matrix. Figure 12 shows a three by three problem with six elements and 32

nodes. This matrix has a very different graph but has the same number of

rows and although they are similar in size the performance changes in the

multi-processor setting due to the extra communication between processors.

Although this is not within the scope of this work, mesh generators and gr

theory play an impor

element proble

 23

Figure 11 Beam Representation and Matrix Graph

Figure 12 Plate Representation and Matrix Graph

2.6.3.

Preconditioning/Solution

Once the A matrix which has been assembled into the global matrix

form it can be solved. There are various ways to solve these large sparse

matrices. For large sparse matrices it is not feasible to produce an exact

solution since this would take an infinite amount of time to compute. Instead

there are various ways to converge on an approximation of the exact result

 24

O

olvers allows for six various “solver”

routines [1 .

imal residual

adient with stabilization

an be

kage provides five methods of preconditioning.

These pre

nomial

• tion

through the use of various iterative and projection methods. The AztecO

package within the Trilinos set of s

7] These routines are:

• AZ_cg- Conjugate gradient

• AZ_gmres- Restarted generalized min

• AZ_cgs- Conjugate gradient squared

• AZ_tfqmr- Transpose-free quasi-minimal residual

• AZ_bicgstab- Bi-conjugate gr

• AZ_lu- Sparse Direct Solver

These routines provide various techniques for converging on the exact

solution to the matrix-vector equations (Equation 1). These equations c

preconditioned to allow for faster convergence. Preconditioning these

equations in matrix form requires another matrix (preconditioning matrix) to be

multiplied in order to achieve faster convergence and is beyond the scope of

this work. The AztecOO pac

conditioners are:

• AZ_Jacobi- k step Jacobi

• AZ_Neumann- Neumann series poly

• AZ_ls- Least-squares polynomial

AZ_symm_GS- Non-overlapping domain decomposi

(additive Schwartz) k step symmetric Gauss-Siedel

 25

e in the AztecOO package,

t within the Trilinos solvers, such as a multi-

level p

al

le will

e element

stiffness matrices. Figures 13-15 show the example implemented in

COSMOS which is a finite element solver used in Solidworks.

• AZ_dom_decomp- Domain decomposition preconditioner

(additive Schwartz)

Although these are the preconditioners availabl

various other preconditioners exis

reconditioner found in the ML package.

2.6.4. Finite Element Example

An example of finite element analysis is helpful in understanding the

process of computing the final result in a finite element problem and proved

extremely useful in understanding performance analysis data from our actu

study of the representative application used in this work. This examp

show how the assembly of the global matrix takes place from th

Figure 13 Cosmos Example

Figure 14 Cosmos Elements

 26

Figure 15 Cosmos Final Solution

In these figures the example is a beam shaped object with one side

fixed and the other with a force of 500 ft-lbs in the opposite direction. The

elements used within COSMOS are a tetrahedral shape and in this test

problem there are a total of 848 elements and 1563 nodes. As seen in Figure

12 there is a displacement on the right of the figure due to the force of 500

lbs. The example that is shown next is a simplified version of the actual

computation of the elements and how the elements are assembled to

represent the whole system that is shown in the COSMOS example. The

differences in this example and the COSMOS example are that the elements

are triangular in shape as opposed to tetrahedral and the example is two-

dimensional. Figure 16 shows the layout of the beam and the location on the

“xy” plane.

Figure 16 Thin Plate Example

This example shown in Figure 16 is a structural analysis problem of a

thin plate with dimensions 6 feet wide, 10 feet long, and 1 inch thick. It is fixed

along the y axis and is acting under pure tensile loads of 100 kips each,

applied at two corners. This problem is trying to solve for the displacements in

the x and y directions. Some other information that is needed to solve the

finite element method of the plate is Young’s modulus and Poisson’s ratio

values of 30,000 and 0.5, respectfully. The structure is already split into four

elements label 1-4 with five nodes labeled 1-5. The governing matrix equation

for the analysis of the structure is given by Equation 2:

}{}]{[QK =∂ Equation 2

where the global stiffness matrix [K] is defined by Equation 3 which is the sum

of each individual element’s stiffness matrix:

 27

∑=
n

kK
1

][][Equation 3

The expression that defines the element stiffness matrix [K] is given by

Equation 4 which is derived from an equilibrium equation in structural

analysis. Its explanation is beyond the scope of this work but is expressed as:

2
}]{[}{][dydxtBDBk T ⋅

⋅⋅= Equation 4

The displacement-strain matrix {B} is defined for a triangular element defined

by nodes i, j, m and is expresses in Equation 5, in which xi, xj, xm, yi, yj, and ym

are the nodal coordinates in the “xy” plane of nodes i, j, and m, respectfully.

The thickness of the plate is defined by t in Equation 4 and the area of the

element is given by A in Equation 5 which is also equal to twice the value of

. dydx ⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−−−
−−−

−−−
=

yjyixixjyiymxmxiymyjxjxm
xixjxmxixjxm

yjyiyiymymyj

A
B 000

000

2
1}{ Equation 5

The elasticity matrix for a plane stress analysis problem in a two-dimensional

setting is given by Equation 6 and its derivation is also beyond the scope of

this work.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
=

2
100

01
01

1
}{ 2 v

v
v

v
ED Equation 6

The general nodal displacement matrix {∂} is shown in terms of u and v which

correlate to x and y, respectfully. The term u1 in Equation 7 correlates to the
 28

“x” displacement for node 1 and v1 correlates to the “y” displacement for node

1 and so on.

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=∂

5

5

4

4

3

3

2

2

1

1

}{

v
u
v
u
v
u
v
u
v
u

 Equation 7

The boundary condition of 100 kips is applied to nodes 4 and 5 as defined in

Figure 16 and is illustrated by the Equation 8 in which the terms also correlate

to the terms in Equation 7.

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

0
100

0
100

0
0
0
0
0
0

}{Q

 Equation 8

The generation of the global stiffness matrix is achieved by computing the

stiffness matrix associated with each element and then assembling them into

the global matrix. Figure 17 shows the coordinates of the nodal points of the

structure.

 29

Figure 17 Thin Plate Nodal Coordinates

 The generation of element stiffness matrix is shown only for element 1 as

each other element is found using the same method. The displacement-strain

matrix {B} of element 1 is shown below.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−−−
−

−−

⋅⋅
=

3560)63(5
500050
03060)63(

144302
12}{B Equation 9

Equation 9 shows the displacement-strain matrix with the area equal to 30

times one inch (12/144) and the values of xi, xj, xm, yi, yj, and ym are the

coordinates in the “xy” plane shown in Figure 17. Equation 10 shows the

simplification of Equation 9:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−−−
−

−−
=

356035
500050
030603

720
1}{B Equation 10

The elasticity matrix [D] (Equation 11) is shown using Young’s modulus (E in

Equation 6) and Poisson’s ratio (v in Equation 6).

 30

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
=

2
5.0100

015.0
05.01

)5.0(1
30000}{ 2D

 Equation 11

Equation 11 simplifies to the following matrix form of Equation 12:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

25.000
015.0
05.01

75.0
30000}{D Equation 12

The calculation of the element stiffness matrix is determined by Equation 13:

AtBDBk T ⋅⋅= }]{[}{][1 Equation 13

The constants of the matrix multiplication are precomputed in Equation 14:

() 67.166
2
144651

75.0
30000

720
1 2

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ xx Equation 14

Equation 15 shows the substitution of the values of the matrices B and D in

Equation 13:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−

−−
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−−

×=
356035

500050
030603

25.000
015.0
05.01

350
503
600
006
350
503

)67.166(][1k
 Equation 15

Equation 15 simplifies to Equation 16:

 31

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−

−−
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−−
−−−

×=
356035

500050
030603

75.055.2
25.15.13
5.100

036
75.055.2
25.15.13

)67.166(][1k
 Equation 16

And further to Equation 17:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−
−−−

−−−
−−−
−−−

×=

25.2725.115.41575.2275.3
25.1125.155.71875.375.2
5.45.7905.45.7

15180361518
75.2275.35.41525.2725.11

75.375.25.71825.1125.15

)67.166(][1k

 Equation 17

The contributions of Kij (nodes) to the global matrix are shown below with

each being a 2x2 matrix corresponding to 2 degrees of freedom, one in the x

direction and the other in the y direction. Recall degrees of freedom represent

a variable within the problem that can represent direction, velocity,

displacement, or any other physical variable that needed to solve these finite

element problems.

For element 1:

⎥
⎦

⎤
⎢
⎣

⎡
=

25.2725.11
25.1125.15

11K ⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
5.415
5.718

13K ⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
75.2275.3

75.375.2
12K

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
5.45.7

1518
31K ⎥

⎦

⎤
⎢
⎣

⎡
=

90
036

33K ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

5.45.7
1518

32K

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
75.2275.3

75.375.2
21K ⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

5.415
5.718

23K ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

25.2725.11
25.1125.15

22K

 32

For element 2:

⎥
⎦

⎤
⎢
⎣

⎡
=

25.2725.11
25.1125.15

22K ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

505.7
155.12

23K ⎥
⎦

⎤
⎢
⎣

⎡ −−
=

75.2275.3
75.375.2

24K

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

5015
5.75.12

32K ⎥
⎦

⎤
⎢
⎣

⎡
=

1000
025

33K ⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
5015

5.75.12
34K

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
75.2275.3

75.375.2
42K ⎥

⎦

⎤
⎢
⎣

⎡
−−
−−

=
505.7
155.12

43K ⎥
⎦

⎤
⎢
⎣

⎡ −
=

25.2725.11
25.1125.15

44K

For element 3:

⎥
⎦

⎤
⎢
⎣

⎡
=

25.2725.11
25.1125.15

11K ⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
75.2275.3

75.375.2
15K ⎥

⎦

⎤
⎢
⎣

⎡
−−
−−

=
505.7
155.12

13K

⎥
⎦

⎤
⎢
⎣

⎡ −−
=

75.2275.3
75.375.2

51K ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

25.2725.11
25.1125.15

55K ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

505.7
155.12

53K

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
5015

5.75.12
31K ⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

5015
5.75.12

35K ⎥
⎦

⎤
⎢
⎣

⎡
=

1000
025

33K

For element 4:

⎥
⎦

⎤
⎢
⎣

⎡
=

25.2725.11
25.1125.15

55K

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
25.2725.11
25.1125.15

54K ⎥
⎦

⎤
⎢
⎣

⎡
=

5.415
5.718

53K

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
25.2725.11
25.1125.15

45K

⎥
⎦

⎤
⎢
⎣

⎡
=

25.2725.11
25.1125.15

44K ⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
5.415
5.718

43K

⎥
⎦

⎤
⎢
⎣

⎡
=

5.45.7
1518

35K
⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
5.45.7

1518
34K

⎥
⎦

⎤
⎢
⎣

⎡
=

90
036

33K

Once all the element stiffness matrices have been found the assembly

process can begin by summing all the contributions according to the

following:

 33

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

∑∑∑∑∑
∑∑∑∑∑
∑∑∑∑∑
∑∑∑∑∑
∑∑∑∑∑

5554535251

4544434241

3534333231

2524232221

1514131211

KKKKK
KKKKK
KKKKK
KKKKK
KKKKK

K
 Equation 18

Each term in Equation 19 contributes a 2x2 matrix to the final matrix. Only the

nodes that are shared between elements will need to be summed. The global

stiffness matrix is shown in Equation 19 which is a 10x10 matrix because

there are five nodes each with two degrees of freedom for all the elements:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−−

−−−−−
−−−−−
−−−−−−

−−−−−
−−−

−−−
−−−−
−−−−

⋅=

5.54025.2725.115.455.220075.2275.3
05.3025.1125.155.225.50075.375.2

25.2725.115.545.225.545.2275.2275.300
25.1125.1505.305.225.3075.375.200
5.455.225.545.2221805.545.225.545.22

5.225.55.225.3001225.225.305.225.30
0075.2275.35.545.225.54075.2275.3
0075.375.25.225.3005.3075.375.2
75.2275.3005.545.2275.2275.35.545.22

75.375.2005.225.3075.375.25.225.30

)67.166(K

Equation 19

The computation of the nodal displacements, {∂}, is based on Equation 20:

}{][}{ 1 QK −=∂ Equation 20

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⋅⎟
⎠
⎞

⎜
⎝
⎛=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=∂ −

0
100

0
100

0
0

][
67.166

1}{ 1

5

5

4

4

3

3

K

v
u
v
u
v
u

 Equation 21

 34

Because nodes 1 and 2 are fixed, the stiffness matrix is reduced to a 6x6

matrix. The other unknown displacements are computed with the previous

equation. The reduced inverted stiffness matrix is shown below as:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=−

118.0003.0111.00052.0001.0
051.0047.006.0019.0023.0004.0
077.00096.0014.0039.00
13.0028.0142.0052.0065.0014.0

052.0001.0056.00029.0001.0
023.0004.003.001.0013.0012.0

][1K
 Equation 22

.
67.166

1

279.0
624.6
354.1

988.7
139.0

397.1

}{ in⋅

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−

−

=∂

 Equation 23

This problem demonstrates the basic method of finite element analysis

through solving a basic a simple structural analysis example. Changing the

problem from triangular elements to hexahedral adds more complexity and

the matrix size is much larger because each element now has eight nodes

instead of three. So for this problem to be changed to hexahedral elements

the number of nodes per element would change from three to eight and since

there were two degrees of freedom, each element would contribute a 16x16

matrix to the global stiffness matrix instead of a 6x6 matrix as shown with the

triangular elements.

 35

2.7. Sparse Matrices

Sparse matrices are matrices that have few nonzero terms compared

to zero terms, usually situated close to the diagonal of the matrix. Sparse

matrices arise in many scientific/engineering applications. Some of the

applications are structural analysis, networks, and fluid-flow. In Equation 24,

}]{[}{ xAf = Equation 24

the “A” matrix is usually a sparse matrix in the application of Finite Element

Analysis as seen in Section 3.6.4 and is also the main operation in many

different iterative solvers such as Preconditioned Conjugate Gradient method.

The benefit of sparse matrices is that only the nonzero terms and their

locations need to be saved. There are several ways to store a sparse matrix

as discussed in the next section.

2.7.1. Storage Schemes

The first and most obvious is the use of three arrays one for the

column, another for the row, and finally one for the data. The types of these

arrays are integer, integer, and double, respectively in most cases. Shown in

Table 3 is an example of the column-row technique called coordinate format.

This is shown in Table 2 using zero indexing [18]. The coordinate format

shown in Table 3 is a format where the row and column locations of only

nonzeros are stored. For example, the term “3.0” found in row one and

column one of Table 2 (using zero indexing) is represented by a “1” in i-index,

a “1” in j-index, and a “3.0” in value [all in location two of there respective
 36

 37

arrays]. All of the other non-zero elements in Table 2 can be represented by

the three arrays in Table 3 in a similar manner.

Table 2 Example Matrix for Sparse Storage Schemes
1.0 0 0 2.0 0 0
 0 3.0 0 0 4.0 0
 0 0 5.0 0 0 0
6.0 0 0 7.0 0 8.0

Table 3 Example Sparse Matrix Coordinate Format Storage

i-index = (3, 1, 0, 3, 2, 0, 1, 3),
 j-index =(5, 1, 3, 3, 2, 0, 4, 0),
 value = (8.0, 3.0, 2.0, 7.0, 5.0, 1.0, 4.0, 6.0)

Next is a storage-by-row technique called compressed row storage

(CRS) which also consists of three arrays of the same type as the coordinate

format. The only difference is that the row array is compressed to only contain

pointers to the first non-zero data entry in each row contained in the data

array. The only array that changes compared to the coordinate format shown

above is the i-pointer array. The i-pointer for CRS format points to the location

within the j-index array that is the first nonzero of each row. For example, the

second term in i-pointer points to value “1” (remember zero indexing) in j-

index so one would know when the next row began. Table 4 shows this

technique. There also is a technique called compressed column storage that

is implemented in a similar manner, except the column array is compressed

rather than the row array as in the CRS format.

 38

Table 4 Example Sparse Matrix CRS Format Storage
i-pointer = (0, 2, 4, 5, 8),
j-index = (0, 3, 1, 4, 2, 0, 3, 5),
 value = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)

The last method is called variable block row format (VBR) which is

used when there are large portions of the matrix that can be divided into

smaller dense matrices (Table 5). This method has six arrays to hold the

various information. The first array (row-pointer) is an integer array that holds

pointers to the boundaries of the block rows (Table 6). The next array (column

pointer) is also an integer array that holds pointers to the boundaries of the

block column. Another array (value) is an array of doubles that contains the

block entries of the matrix. Another integer array (index) holds the pointers to

the beginning of each block entry stored in the value array. An integer array

(block-index) contains the block column indices of the block entries (Table 7)

in the matrix. The final array (block-pointer) contains pointers to the beginning

of each block row in block-index and the value arrays. This method is the

most difficult to implement and is shown graphically in Tables 5-6.

Table 5 Example VBR Matrix
 0 1 2 3 4 5 6 7 8
 +----------+----------------+------+-----------+
0 | 1.0 2.0 | | 3.0 | |
1 | 4.0 5.0 | | 6.0 | |
 +----------+----------------+------+-----------+
2 | | 7.0 8.0 9.0 | 10.0 | |
 +----------+----------------+------+-----------+
3 | | | 11.0 | 12.0 13.0 |
4 | | | 14.0 | 15.0 16.0 |
5 | | | 17.0 | 18.0 19.0 |
 +----------+----------------+------+-----------+
6

 39

Table 6 Example VBR Storage Matrix
Row pointer = (0, 2, 3, 6)
Column pointer = (0, 2, 5, 6, 8)
Block pointer = (0, 2, 4, 6)
Block index = (0, 2, 1, 2, 2, 3)
index = (0, 4, 6, 9, 10, 13, 19)
value = (1.0, 4.0, 2.0, 5.0, 3.0, 6.0, 7.0, 8.0, 9.0,
 10.0, 11.0, 14.0, 17.0, 12.0, 15.0, 18.0,
 13.0, 16.0, 19.0)

Table 7 Block Representation of Matrix
 0 1 2 3 4
 +----+----+----+----+
0 | b0 | | b1 | |
 +----+----+----+----+
1 | | b2 | b3 | |
 +----+----+----+----+
2 | | | b4 | b5 |
 +----+----+----+----+
3

To understand the VBR technique of storing sparse matrices let us look at the

example of accessing the block row 1 in Table 5. First a lookup in the block

pointer array and is needed to see where block row one appears in this case

it is block pointer [1] = 2. This indicates that block two (b2) in Table 7 contains

the first nonzero block from block row one and that it is from block column

one as indicated by block index [block pointer [1]] =1. Second the block

pointer [1] also indexes into index. That is index [block pointer [1]] = index [2]

6 = which points to value [6]. This is equal to value [index [block pointer [1]]

=value [index [2]]. Where 6 is the location in value where the element, 7.0, is

located.

 40

3. RELATED WORK

There are various other works that have studied similar material

relevant to this work. This section is organized by topic. First is some related

work on the performance of Sparse Matrices, then finite element research,

and finally performance studies on the Itanium 2.

3.1. Performance of Sparse Matrices

The performance of sparse matrix operations depends primarily on the

memory hierarchy of the microarchitecture. Taylor [19] has studied the

performance of these operations and has concluded that various memory

organizations maximize the performance of sparse-matrix operations. Sparse

matrices are stored in compressed form in which one data structure points to

the position of the matrix data in another data structure. This form of indirect

addressing allows the cache to be very effective for storing the data because

of the spatial-temporal locality of the accesses. Spatial locality means that if a

location in memory is accessed the datum that is close to that location is likely

to be used in the near future. The term temporal locality states that if a

location in memory/cache has been accessed recently it is likely to be reused

in the near future (i.e., looping). The study by Taylor concluded that to

maximize the performance of these sparse matrix problems, the cache

organization would have to possess the following characteristics:

• Direct-Mapped Cache
• Cache Size of at least 1K words or 8K bytes
• Write-back Policy

 41

• Pipeline depth for write equal to 2 (to allow for one-cycle
minimal write for multi-word block)

• Block size equal to 16 words
• Invalidate data on a read
• 2 interface ports -1 read, 1 write
• 2 phase-clock to allow for simultaneous read and write

Another study by Temam and Jalby describes the performance of

sparse algorithms on caches [20]. They concluded that cache size and the

bandwidth of the matrix are closely dependent. When the bandwidth of the

matrix is smaller than the cache size, spatial and temporal locality is well

exploited with their scientific application. On the other hand, when the

bandwidth is greater than the cache size, self and cross-interference degrade

the reuse of the vector x, meaning the data within x gets overwritten by the

vector x or the data within the A matrix before it gets reused. Also they report

a performance increase when the line size is sufficiently large (around 128

bytes), exploiting the potential locality of the vector x especially in 3-

dimensional finite element problems such as cube3 where the vector x is

used more than in the 2-dimensional case.

3.2. Finite Element Research

Finite element workloads have been used as the basis for performance

studies in other related works. The finite element workloads have mainly been

studied at the multiprocessor level as of late because they can scale on

multiple processors due the intrinsic value of matrix operations, such as [21]

in which they design a high performance, high efficiency multi-processor

computing engine for dynamic finite element analysis. In [22] they use a finite

 42

element workload called DYFESM, which is a structural dynamics code which

implements a finite element model using 8 stress and 5 displacement degrees

of freedom per node. Within this problem they characterized the dominate

loops and correlated the loops to the loop-based Livermoore Fortran Kernels

Benchmark. They found that the dominate subroutine was for a

preconditioned conjugate gradient solver in which it was performing a matrix-

vector multiply. In [23] they conclude that the performance of the 3-D TGM

finite element solver is directly related to the linear system solver, in which

they found the conjugate gradient algorithm to be the most optimal which

uses the same matrix-vector multiply found in [22]. To fully utilize the

resources of an architecture running a application that contains the matrix-

vector multiply found in these finite element workloads Taylor et al. propose

an efficient scheme for storing sparse matrices and through the use of added

hardware to the architecture to help in efficiently executing the proposed data

structure. They demonstrated a 96% utilization of the floating-point units [24].

Also Vuduc et al. of UC Berkley discuss performance optimizations and

bounds for a sparse matrix-vector multiply in which the results suggest that

future performance improvements will come from two sources: 1)

consideration of higher-level matrix structures, and 2) optimizing kernels with

more opportunity for data reuse through higher level techniques [25].

 43

3.3. Itanium 2 Performance Studies

The Itanium 2 microarchitecture is a newer architecture in which the

basis for design was to maximize the performance of scientific applications

that are mainly floating-point workloads. As seen by Purkayastha et al. [26]

the floating-point performance of the Linpack benchmark on the Itanium 2

dominated the studies of modern 64-bit architectures (AMD Opteron, Apple

G5) in which they uses a highly optimized Goto BLAS library. Also within the

performance study in [26], they ran benchmarks of a 3d finite element code

(MGF) and it also performed the best on the Itanium. Griem et al. also studied

the Itanium 2 and propose a synthetic workload consisting of a sparse matrix-

vector multiply to determine various characteristics of various other

architectures besides the Itanium 2 [3]. The results of their studies state that

because of the inability of the Itanium 2’s L1 data cache to store floating-point

variables some delays occur due to the register spills of larger working sets.

But the Itanium 2 was able to hide memory latencies using a large register set

and deep explicit prefetch queues.

Although many benchmarks contain some form of a finite element

problem no current research has been found that focuses on uni-processor

performance characterization of these finite element workloads that does not

discuss the performance of the sparse matrix-vector multiply. Our research

looks further into performance analysis of the Itanium 2 microarchitecture and

how maximum performance may be achieved.

 44

4. THESIS PROBLEM

The motivation for the work is to understand how this finite element

application, “Cube3”, actually goes about creating and solving a system of

equations and the performance characteristics associated with the

application. By studying this application on the Itanium 2, which has the

potential to perform well due to the large cache hierarchy and functional units,

we hope to pin-point a performance bottleneck that can easily be identified

and modified, be it hardware or software, which will lead to a performance

improvement. Also, by studying “Cube3” on the Itanium 2 some micro-

architectural characteristics can be used in future work of creating an analytic

model used in a multi-processor model used at Sandia National Laboratories.

This analytic model will be used in the future to help in the decision of what

type of processor will have the best performance benefits used in the next

generation of supercomputers.

 45

5. WORKLOAD

National laboratories have some of the largest and most costly

supercomputers ever designed and built. Because of the high cost of design

and construction some studies of the workload executed on these computers

are needed to understand how they spend most of their execution time.

Bradley et al. [27] have studied the types of applications running on their

system and have shown that the greatest amount of computing time has been

in scientific workloads such as Finite element and physics based applications.

Most of these programs use matrix operations which solve large numbers of

differential equations. Therefore, a representative workload should include

matrix assembly and various techniques of solving these matrices.

A workload that is intended to be representative of the many scientific

codes was chosen as a basis of all scientific workloads at Sandia National

Laboratories. This workload is a Finite Element problem that allows the user

to specify various different techniques to solve the problem. The workload is

described in detail in the next section. The overall study of this workload is to

better understand the workloads on National Laboratories computers and also

to provide information on what type of microarchitecture will maximize the

performance of these types of applications.

5.1. The “Cube3” Application

The application chosen for this performance study is a Finite Element

test problem, called “Cube3,” written and provided by Alan Williams of Sandia

National Laboratories in Albuquerque, New Mexico. “Cube3” is a test problem

of a finite element interface (FEI) written as an abstraction layer between

engineering/scientific software and math solvers [28]. The FEI is a linear

system assembly library used for assembling sparse matrices in applications

that use unstructured meshes. The finite element interface provides a layer of

software to allow applications the ability to switch between various solvers

without changing application code. The various linear solvers that can be

used by the finite element interface are Trilinos, PETSc, FETI-DP, HYPRE,

SPOOLES, Prometheus, and others. The “Cube3” test problem is an arbitrary

problem written to test the performance of linear system assembly and

solution. Although “Cube3” only mimics a finite-element problem it was

chosen to represent Sandia’s workloads because of its simplicity and the

genuineness of the assembly and solve processes within the “Cube3”

workload. The test problem mimics a finite element application because it

imitates the data produced from an application operating on a mesh of 8-node

hexahedral elements (shown in Figure 18). The nodes are represented at

each corner of the hexahedral element.

Figure 18 Hexahedral Element

 46

The number of elements can be varied based on width, depth, and

degrees of freedom based upon an input file used by the “Cube3” test

problem which can be found in the Appendix. These degrees of freedom

represent physical attributes such as pressure, temperature, velocity, or any

other physical phenomenon that one wishes to compute. The number of

elements is calculated by (width) · (width) · (depth). Figure 19 shows a

graphical representation of a width equal to three and a depth of one.

Figure 19 3x3x1 Hexahedral Elements

 47

The number of equations in the linear system is equal to the number of

nodes multiplied by the number of degrees of freedom per node where the

number of nodes is equal to (“width”+1) · (“width”+1) · (“depth”+1). As stated

above, each node can be defined to have a specified number of degrees of

 48

freedom. This test problem usually runs on large multi-processor systems

using a MPI (Message Passing Interface) to achieve better performance. In

the parallel setting this problem is spilt across the depth of the cube. In other

words the depth is divided by the number of processors specified during

runtime. The shared nodes, which are nodes at the boundary of where the

problem is split, appear on both of the processors. The “Cube3” workload

provides a good test problem of the various underlying solvers and the how

the problem is assembled, which is a major reason for use as a

representative workload.

6. METHODOLOGY

The performance study of the representative workload, “Cube3,” is

determined first by establishing a problem size that will be studied. The

problem size should be chosen to maximize the utilization of the cache under

study, in this case the cache of the Itanium 2. The cache statistics collected

by the performance-monitoring unit decide what problem size to study since

the data of the matrix and vectors of the Finite Element problem need to be

held in the memory hierarchy to maximize the performance of the application.

By executing “Cube3” with various problem sizes, we identify a size

sufficiently large enough such that the working set can not be fully held in

cache. The first step in varying problem size is to determine a maximum

number of equations that can successfully complete on the Itanium 2

microarchitecture. Once a maximum value is found, then problem size studies

are conducted based on varying the problem size via the input file to “Cube3”.

These values are calculated by Equation 25 described in Section 5.1:

)()1()1()1(dofdwwequations ⋅+⋅+⋅+= Equation 25

After determining an appropriate problem size, various studies during

runtime are performed to understand more about the “Cube3” application.

These studies include studying the various phases throughout the execution

of “Cube3.” This is conducted through the use of call graph and profile results

in correlation to the interval data collected throughout the execution of

“Cube3.” Vtune is used to generate the call graph data and profile data. The

 49

 50

interval IPC graphs are achieved through the use of the PERFMON software

by outputting the number of cycles completed every one million instructions

and then resetting the counter so that it is no longer a cumulative counter.

This will give a list of the number of CPU cycles every one million instructions.

By graphing the interval IPC data the phases with poor performance can be

located by low segments of the IPC.

Experiments are then conducted on how varying the shape of an

object that “Cube3” is studying will effect the various phases of execution. By

holding the number of equations constant for a few different shapes (i.e.

beam, cube, or thin plate) various performance attributes can be studied.

Instruction mix of the shape under study is also collected to help to categorize

the application as an integer or floating-point application and how the shape

effects the instruction mix. In addition, cache statistics are studied to

understand if the shape of object changes the cache miss rates. These

studies help in understanding the application as the problem changes as it

does in a real world application.

Once an overall understanding of the “Cube3” application is achieved a

detailed performance study is conducted based on the problem size studies.

The performance study is conducted using stall counters within the Itanium 2

microarchitecture. To determine where the stalls in the pipeline occur Jarp

[29] has determined a methodology for performing bubble analysis on the

Itanium microarchitectures using the hardware performance counters. This

 51

methodology provides a top-down approach to identify and understand

bottlenecks in the micro-architecture. This bubble analysis methodology

allows a user to determine if the major cause of performance degradation is

due to data cache stalls, branch misprediction, instruction miss stalls, floating-

point unit stalls, general register scoreboarding, or front-end flushes. Through

this global stall analysis, we can identify problem areas in the micro-

architecture.

The methodology of this bubble analysis examines all the stall

contributions in the pipeline and then allows for further exploration of those

major stall contributions. The first step in determining a bottleneck using

Jarp’s approach is to consider all stall cycles and determine the cause of the

stall. The Itanium 2 micro-architecture has two major components, the front-

end (instruction decode and dispatch) and the back-end (execution). Within

the Itanium 2 microarchitecture there are five main units which can cause

stalls:

• Back-end stalls caused by an exception/interruption or branch

misprediction flush (PMU event be_flush_bubble_all)

• Back-end stalls due to Level 1 data cache or Floating Point Unit

(be_l1d_fpu_bubble_all)

• Back-end stalls due to the execution stage of the pipeline

(be_exe_bubble_all)

 52

• Back-end stalls due to the register stack engine

(be_rse_bubble_all)

• Back-end stalls due to the Front-End (be_exe_bubble_fe).

Within each of these categories are vary sub-counters to provide a finer

granularity of the stall causes. The stall counters and their sub-counters are

shown in Table 10. The major contributions of the second sub-counter of

“Cube3” will be described in detail in the results section.

Table 8 Itanium 2 Stall Counters
Total Stall
Counter Sub-Counter Second Sub-Counter

Be_flush_bubble_bru
Be_flush_bubble_xpn Be_flush_bubble_all

Be_L1d_fpu_bubble_l1d
Be_L1d_fpu_bubble_l1d_dcurecir
Be_L1d_fpu_bubble_L1d_tlb
Be_L1d_fpu_bubble_L1d_stbufrecir
Be_L1d_fpu_bubble_L1d_fullstbuf
Be_L1d_fpu_bubble_L1d_L2bpress
Be_L1d_fpu_bubble_fpu

Be_L1d_fpu_bubble_all

Be_exe_bubble_grall
Be_exe_bubble_grgr
Be_exe_bubble_frall
Be_exe_arcr_pr_cancel_bank

Be_exe_bubble_all

Be_rse_bubble_overflow
Be_rse_bubble_underflow Be_rse_bubble_all

Back_end_bubble_all

Back_end_bubble_fe none

“Cube3” also has the ability to change the various solver algorithms

used to solve the linear system through the use of the AztecOO package

within Trilinos. By varying the different methods of solving the “Cube3”

problem, a comparison of the solvers is performed to see the benefits of

 53

each. This could lead to performance improvements of one or all due to the

various solution methods performance characteristics. This is done through

the use of the call graph/ profile data and the use of the interval data. Also,

“Cube3” has the ability to change various storage methods (Crs and Vbr)

through the input file as well as changing from the use of no preconditioner to

the use of various preconditioners. A comparative analysis of the various

methods will help to understand the different characteristics of each. This

study will also use the interval IPC data to understand the changes in the

phases and to see the performance benefits of each.

The Itanium 2 is a VLIW microarchitecture which is an in-order core

which relies on the compiler to perform all scheduling of parallel instructions.

This means that the performance of applications relies mainly on the compiler

in use. A comparative analysis is needed to see which compiler performs the

best on the Itanium 2. The two compilers available on our Itanium 2 are the

Intel Icc compiler and the Gnu Gcc compiler.

Throughout the performance analysis of “Cube3” a problem section of

the code is determined within the solve phase of execution. Some

optimizations to the code were implemented in conjunction with some

compiler optimizations to see if performance gains are achievable within the

compilers in use. The results of these studies are also presented in the

results section.

 54

7. RESULTS

The results section of this work present the work necessary to

understand “Cube3” as well as understand the performance of it. Section 2 of

the results helps in the understanding of “Cube3” whereas Sections 3 through

5 are focused on the performance associated with “Cube3” on the Itanium 2.

7.1. Problem Size

We began the problem size studies on the Itanium 2 microarchitecture

by choosing a large cube size of width 72, depth 72 and six degrees of

freedom which calculated to a total number of equations equal to 2,334,102.

With this problem size the Itanium 2 ran out of memory so the study was

backed down to a maximum number of equations of about half the size of

72x72x6 which was around one million equations. With a maximum problem

size of one million equations the problem size was great enough to

overwhelm the cache. For example a 100x100x1 problem size contains about

27 million nonzeros which overwhelmed the L3 cache of size 1.5 Meg. This

number was large enough to alleviate any cold start misses and stress the

cache hierarchy sufficiently. Various configurations of width and depth and

degrees of freedom were calculated to have a maximum of one million

equations. The only study that showed any conclusive data was the study of

varying width with constant depth and degrees of freedom. Table 8 shows the

problem sizes executed to get the plot found in Figure 20. The rest of the

problem size studies and plots are contained in the Appendix.

 55

In Figure 20, one can see that the maximum IPC correlates with the

minimization of the cache miss rates in the level 3 cache (Level 1 miss rates

are not shown due to the fact that floating-point data bypasses the L1 cache

and also because the PMU does not have a counter for L1 data). The

maximum performance is at a point when the problem size is 300x1x1 which

equates to 181,202 equations. From that point on the caches start having

conflict misses due to the fact that the problem size was too large to be

entirely held in cache and therefore needed data was getting overwritten by

other data which increases the miss rate leading to performance degradation.

The next study studied various problem sizes that have a maximum of

around 180,000 equations because of the maximum IPC point was when

there were around 180,000 equations in the study of problem size above.

This study had inconclusive results (results shown in Appendix) because of

the fact that all the studies of varying shape showed relatively the same

statistics for IPC, L2 miss rates, and L3 miss rates as the problem shape was

varied. The problem sizes that were studied were of sizes 300x1x1 (181,202

equations), 55x55x1 (175,616 equations), 45,000x1x1 (180,004 equations)

due to the performance characteristics of various problem shapes shown in

section 7.2.2.

Figure 20 Vary Width CRS -IPC, L2&L3 Cache Stats

Table 9 Problem Sizes for Figure 20

 56

7.2. Runtime Description

The performance analysis of the “Cube3” workload depends greatly on

the understanding of what occurs throughout the execution of “Cube3.” This

section provides some incite to what is happening throughout the execution of

“Cube3.” This section also shows where the major performance degradation

of “Cube3” occurs.

7.2.1. Cube3 Phases

First, to understand the workload itself we generated the call graph

using Vtune. The call graph shows the various functions that “Cube3” calls

from the main procedure (Figure 21). There are twelve primary functions that

the main function calls along with a few initialization functions that create a

matrix graph and connectivity lists. Figure 21 only shows the first level of

function calls due to the complexity and abundance of function calls within

“Cube3”. Also shown is the three functions where “Cube3” spends most of its

execution time (insert, sum in, and multiply).

Figure 21 Cube3 Call graph

 57

 IPC interval data shows the “Cube3” phases of execution as seen in

Figure 22. This figure shows the execution of a 55x55x1 problem size. We

chose this size because the various phases are very evident throughout the

execution. Figure 20 shows a low IPC execution phase toward the end of

execution. To find out what part of the code is causing the performance

degradation Vtune allows the user to map the call graph to the source code.

Figure 22 55x55x1 Interval IPC

The mapping of the call graph of Figure 21 and the execution data of

Figure 22 is shown by Figure 23. There are three primary functions in which

 58

“Cube3” workload spends most of its time: Create Matrix, Load Element Data,

and Solve. The poorest performing is obviously the solve phase, which will

be discussed later in the compiler optimization section.

Figure 23 Call graph Mapping to Interval IPC

7.2.2. Varying The Shape of Cube3 Problem

These previous graphs are of a “Cube3” with CRS storage method

using a GMRES solver. The following figures contained data generated by

“Cube3” using a GMRES solver as we vary the problem shape and the

storage method (CRS, VBR). In addition to Figure 22 (55x55x1), are two

 59

graphs of which the shape has been varied from a cube to a beam to a plate.

Figure 24 uses a beam (1x45000x1) and Figure 25 uses a plate (300x1x1).

Figure 24 1x45000 Interval IPC

Figure 25 300x1x1 Interval IPC

 60

Figure 26 Vary Shapes - Interval IPC

The relative performance characteristics change depending on the shape of

the problem due to the connectivity of the nodes and elements and the

number of the nonzeros within the matrix. The 300x1x1 problem size seemed

to utilize the cache the best in the results shown in Figure 20 in the previous

section but studying the interval data it is clearly taking a lot longer than the

other two problem shapes as evidenced by Figure 26. However, by studying

the interval data graph and the call graph it seems that the time is spent in or

before the creation of the matrix execution phase. This appears to be an

anomaly and after coordinating with the author, we believe it is a problem with

the code. The other two graphs of 55x55x1 and 1x45000x1 appear to have

 61

 62

the same execution phases but the beam (1x45000x1) completes much faster

than the cube (55x55x1) due to the fact that the beam has more number of

nonzeros in its “A” matrix. Talking further with the author of “Cube3” the actual

performance depends on the number of nonzeros in the matrix and not the

shape. Figure 26 shows the three shapes with the same x-axis to show the

time spent completing each problem shape. Recall that these three problem

shapes have approximately the same number of equations meaning the “A”

matrices are about the same dimension but have different numbers of

nonzeros.

7.2.3. Varying Storage Techniques

Section 3.7 described various methods of storing sparse matrices (Crs

and Vbr). By varying the storage method from compressed row storage to

variable block row techniques the performance can be seen in Figure 27 to

affect the load element data phase of the “Cube3” workload. The variable

block row storage method has poor performance for these sizes mainly

because of the complexity involved in retrieving the data from the various

arrays presented in Section 3.7. For “Cube3” the data within the “A” matrix is

accessed row-wise and that is why the compressed row storage method is

the most popular implementation of sparse matrix data structures because

the data is stored row-wise.

Figure 27 Crs and Vbr Methods 55x55x1 with Gmres Solver

7.2.4. Runtime Statistics

The instruction mix for the compress row storage method is shown in

Figure 28. Due to the large amounts of data being manipulated the number of

loads accounts for around 20 percent of the overall instruction mix. Also as

can be seen from this data as the number of nonzeros increases (1x45000x1

to 55x55x1) the percentage of floating-point operations increases. So as the

“A” matrix becomes more dense the more floating-point intensive the

application becomes.

 63

CRS Instruction Mix

0%

10%

20%

30%

40%

50%

60%

70%

1x45000x1
55x55x1
300x1x1

1x45000x1 17.628% 5.168% 15.181% 3.858% 58.165%

55x55x1 18.283% 4.050% 14.166% 5.893% 57.608%

300x1x1 14.984% 12.464% 14.354% 0.922% 57.276%

Loads Stores Branches Floating Point Other

Figure 28 Crs Instruction Mix

The cache on the Itanium 2 should provide the best source of

performance improvement over other architectures due to the large sizes of

the caches. But to fully utilize the cache a problem size and shape must be

chosen that stresses the cache (i.e. does not fit in the cache). This makes

performance analysis difficult because depending on what a scientist is

simulating, the problem size and shape changes. Table 9 shows the cache

statistics for the three problem sizes. As shown in the table, 300x1x1 allows

the cache to perform the best because the matrix creation process seems to

be stuck allowing the cache miss rates to increase because it is accessing the

same data. The variable block row storage method results are very similar to

 64

 65

the statistics found in Figure 28 and Table 9 and thus will not be shown here

but can be found in the Appendix. Studying Table 10 helps to explain why

the IPC is lower for the other problem sizes as compared to that of the

300x1x1 problem size. The IPC is lower because the miss rates are so high

meaning that for most of the data being access a latency of 12+ cycles is

encountered because the data has to be brought in from memory. The cache

statistics reiterates that the problem size of 300x1x1 has an error as stated

before and the other two problem sizes still do not take advantage of the

caches due to their high L3 miss rates. As a conclusion some future work still

needs to be done to exercise the caches better which will be discussed the

future work section.

Table 10 Crs Cache Statistics

Cache Statistics
Crs w01_d45000_dof1 w55_d55_dof1 w300_d01_dof1

L1I miss rate 3.33% 3.02% 0.55%
L1I prefetch miss rate 17.10% 15.76% 17.64%
L1D miss rate 3.96% 3.86% 11.06%

L2 miss rate 3.22% 3.51% 4.77%
L2D miss rate 3.49% 3.79% 4.68%
L2I miss rate 0.26% 0.20% 9.78%

L3 miss rate 92.33% 93.84% 8.42%
L3D miss rate 93.11% 94.30% 7.66%

Cycles/L2 data miss 380.42 352.08 129.99
Cycles/L3 data miss 388.83 364.48 1476.13

7.3. Bottleneck Analysis

Using Jarp’s methodology an analysis of “Cube3” with the three

problem shapes (cube, beam, and plate) was conducted. The results of the

stall analysis are shown in Table 11. For the three shapes, the majority of the

stalls (around 80+ %) occur in the execution stage of the pipeline.

Table 11 Crs Stall Source

To further understand the cause of these stalls in the execution stage

of the pipeline more statistics need to be evaluated. Looking closer at the

Back-end Execution-Stage, the stalls can be broken down into more detailed

statistics by using the PMU events within the Be_exe_bubble event shown in

Table 10. The PMU can monitor what is causing the stalls within the

execution stage of the pipeline; the statistics that can be collected are:

• Back-end stalls due to general register/general register or

general register/load dependency (be_exe_bubble_grall),

• Back-end stalls due to floating point register/floating point

register or floating point register/load dependency

(be_exe_bubble_frall),

 66

• Back-end stalls due to general register /general register

dependency,

• Stalls due to ARCR dependency, PR dependency, Cancelled

Loads, or Bank Switching (arcr_pr_cancel_bank).

These statistics are shown in Table 12. The results show that depending on

the shape of the problem (1x45000x1 to 55x55x1), more importantly number

of nonzeros, the number of stalls due to general register to load dependency

decreases and floating point to load/floating point register to floating point

register increases mainly because the number of floating-point operations

increases when there are more nonzeros within the matrix.

Table 12 Crs Execution Stage Stalls

Grouping statistics to get a better understanding of the actual stall

contributions from a global perspective give us the data shown in Table 13.

Table 13 shows the contributions to each of the main causes of stalls; Table

14 shows a breakdown of three greatest contributions of the stalls in Table

13. The major cause of stalls is load integer and floating point dependency

and/or floating point register floating point register dependency. However,

Table 14 also shows that the branch stalls are due mainly to a branch

misprediction bubbles (fe_bubble_bubble). Some of these stalls could be

 67

alleviated with a bigger branch predictor such as a two-level tournament

predictor.

Table 13 Crs Global Stall Counts

Table 14 Crs Major Stall Contributions

7.4. Solution Techniques

“Cube3” has the ability to change the solver algorithms used to solve

the linear equations established by the finite element problem. To understand

which solver allows for the fastest solve time a comparative analysis with and

without the use of preconditioning is presented in this section. Even though

 68

 69

the various algorithms used to solve these linear systems are beyond the

scope of this work.

7.4.1. Varying Solvers

The AztecOO package in Trilinos provides various solvers as stated in

Section 2.6.3. These solvers provide different iterative algorithms that allow

convergence on the final solution of the linear system. Figure 29 shows the

various interval data from the 55x55x1 problem size varying the different

solvers. The 55x55x1 problem size is only shown because the execution

phases can be seen distinctly and the changes in the solve phase can be

determined. The results of using different solvers showed improvement only

in the time spent in the solve phase due to faster convergence and not due to

architecture performance improvements. All of the algorithms stated in

section 2.6.3 all have the same characteristics in that they all use the same

matrix-vector multiply; the only one that differed was the gmres solver which

uses dgemv as a solver, which is a fortan Blas (Basic Linear Algebra

Subprograms library used in many computer systems) function that performs

matrix-vector multiply. The rest of the algorithms use a loop kernel within the

AztecOO package of Trilinos which calculates the same matrix-vector multiply

but is written in C++. Examining the performance data when using various

solvers within AztecOO the only performance benefit is that some allow for

faster solution convergence and hence fewer iterations are executed to

converge on the final solution. The fastest performing solver is the conjugate

 70

gradient method as shown in the lower graph of Figure 29. The slowest

performing is the restarted general minimal residual (gmres), which is likely a

result of the Blas libraries not being at an optimal level for the Itanium 2. The

conjugate gradient method performed the best regardless of the problem

shape as well as the Vbr storage format. Results are shown for the Vbr format

in Appendix.

7.4.2. Vary Preconditioners

In addition to the solver algorithms, another method that allows for

faster convergence on the final linear system solution is the method of matrix

preconditioning. Preconditioning the matrix involves multiplying the “A” matrix

by another matrix, which is called the precondition matrix, then that new

matrix is sent to the solver. The various preconditioning methods that can be

used by the “Cube3” workload are defined in the AztecOO solver library and

also are stated in Section 2.6.3. Figure 30 is a graph that shows the

performance of varying the preconditioners on a problem size of 55x55x1

using the conjugate gradient solver. Throughout the executions the k-step

Jacobi allowed for the fastest convergence using only one step. As seen in

Figure 30 the k-step Jacobi only spends around 1.5 billion instructions in the

solve phase as compared to no preconditioning which spends around 3 billion

instructions in the solve phase. The worst performance was observed using

the domain decomposition preconditioner, which took the longest to complete

(almost 30 billion instructions just in the solve phase). The Vbr results concur

with these results and can be found in the Appendix.

Figure 29 Crs 55x55x1 Varying Solver Methods

 71

Figure 30 Crs 55x55x1 Varying Preconditioners with CG solver

 72

 73

7.5. Compiler Optimizations

The Itanium 2 relies mainly on the compiler to achieve performance

improvement over other architectures. The performance of the application

under study depends greatly on the compiler and the compiler optimizations

used on the application. This section of the work studies some of the benefits

of each.

7.5.1. Utilizing different Compilers

The two compilers that are available for use on the Itanium 2 at NMSU are

the Gnu Gcc compiler and the Intel Icc compiler. The Gcc compiler has some

built in functions that allow for performance improvement of an application.

Such compiler techniques as loop unrolling and prefetching loop data help to

improve the performance of an application. Loop unrolling is a concept that

actually unrolls the loop iterations with the conjunction of register renaming so

that the assembly code does not have any dependent instructions allowing

the loops to run in parallel which improves the overall performance of this

kernel. Prefetching loop data is a technique if supported by the architecture

that issues prefetch instructions to fetch data used in large arrays to improve

the performance of the loops. The Icc compiler does not have these

capabilities available for ia64 instructions (64-bit Itanium instructions) but

does have the capability to perform software pipelining that the Gcc compiler

does not have. The technique of software pipelining is the method that a

compiler uses by taking independent instructions from each iteration of the

original loop and creates another loop that only contains independent

instructions with some setup and closing instructions to complete the same

process as the original loop. Figure 31 shows the performance of the problem

size of 55x55x1 when compiled with Gcc with no compiler optimizations

versus the Icc compiled workload with software pipelining available as per

Jarp [30]. Figure 31 shows that there is no performance gain using the Icc

compiler versus the Gcc compiler. One reason may be that the Icc compiler

was not installed correctly and is reverting to the Gcc libraries. Some future

work in this area is needed to determine if the Icc compiler is actually working

correctly.

Figure 31 Crs 55x55x1 Varying Gcc & Icc Compilers

 74

 75

7.5.2. Loop Optimizations

The matrix vector multiplication is the primary cause of the poor

performance found in the solve phase. This is due to instruction level

dependency. Instruction level dependency is the term used when an

subsequent instruction needs the data produced from an instruction before it.

If the instruction that is needed is stalled in the pipeline because it is waiting

for data from memory then the dependent instruction is stalled as well.

Some changes to the code were needed in order to see if loop

unrolling was actually being conducted in the compiler to achieve maximum

performance of the loop. The changes to the code were implemented in the

multiply kernel of the AztecOO package (Epetra_CrsMatrix.cpp). The loop is

shown in the following:

for(i = 0; i < NumMyRows_; i++) {
 double sum = 0.0;
 for(j = 0; j < NumEntries; j++)
 sum += RowValues[j] * xp[RowIndices[j]];

 yp[i] = sum;

 }

We modified the code by putting a number within the looping structure

in order to recompile with loop unrolling allowing a higher level of parallelism

to be extracted in the compiler. Hard coding the number of rows

(NumMyRows) to an actual number instead of a variable allows the compiler

to know exactly how many loops to unroll whereas before it could not perform

loop unrolling because the number is not known at compile time. Once the

number is hard coded and recompiled, this will show if the compiler is able to

 76

extract some parallelism through the use of loop unrolling techniques or

software pipelining. The best performance increase would be to hardcode the

number of entries per row of the matrix (NumEntries) but unfortunately this is

a variable and can not be hardcoded. The use of profile guided optimization

can perhaps help the performance of this kernel. The problem with these

optimizations is that in a real-world problem the number of loop iterations is

never known at compile time and profile guided optimizations take a lot of

time to implement because two compilations are needed, one to collect data

and one that uses the data collected. In future work, a dynamic way of

improving this loop-kernel is needed to achieve the best overall performance

improvement in the “Cube3” application. The next section shows some of the

compiler optimization results of this loop kernel.

7.5.2.1. Gcc vs. Gcc Optimized

The Gcc compiler allows a user to compile an application using loop

unrolling and loop prefetching. The performance improvement in the solve

phase is small but noticeable as shown in Figure 32 due to the loop unrolling

and loop prefetching optimizations. Figure 32 shows the gmres solution

interval data improvement and Figure 33 show the CG solution which only

uses the matrix-vector loop kernel of AztecOO. The runtime of the non-

optimized Gcc compilation (upper graph of Figure 33) using the conjugate

gradient solver in CPU cycles was around 10 billion cycles and for the

optimized Gcc compilation (lower graph of Figure 33) was around 8 billion

cycles. This attributes to a 20% gain of the overall execution time in the

“Cube3” application shown in Figure 33.

Figure 32 Gcc with Gmres Solver vs. Loop-Unrolling

Figure 33 Gcc with CG Solver vs. Loop-Unrolling

 77

 78

8. CONCLUSION

The “Cube3” application proposed by Sandia National Laboratories as

a representative workload of the scientific computing proved to be a difficult

problem to study on the Itanium 2 microarchitecture. It was a difficult problem

due to the fact that the performance varies as the shape and size changes of

the problem due to the number of nonzeros within the “A” matrix and also an

error in the code was discovered and hindered results of the 300x1x1

problem size. The error is currently being studied by the author of “Cube3.”

When running “Cube3” on the Itanium 2 the only phase that consistently had

poor performance was the solve phase. The section of the code that

attributed to the poor performance of the solve phase was the matrix-vector

multiply loop kernel found in the AztecOO package in Trilinos. As the problem

size/number of nonzeros of the finite element problem increases the solve

phase dominates the performance degradation of the application. Some

studies were performed to improve the performance of this matrix-vector

multiply kernel. The compiler techniques that were implemented to improve

this kernel were:

• Adding -fprefetch-loop-arrays option in Gcc

• Adding -funroll-loops option in Gcc

 Also, to minimize the execution time of the solve phase of the

workload the use of the conjugate gradient algorithm with a k-step Jacobi

 79

preconditioner proved to be the best in conjunction with the compiler options

stated above.

In conclusion, once a technique has been implemented to help the

matrix-vector multiply improve its performance then all of the solvers within

the AztecOO package of Trilinos will improve, as well as any other solvers

which have a matrix-vector multiply loop kernel similar to that of AztecOO. If a

technique is found in the future to further improve this loop kernel then the

finite element workload will be more dependent on the architecture under

study. But at the time of this work the overall bottleneck of “Cube3” was the

loop kernel and not any of the characteristics of the Itanium 2 micro-

architecture.

 80

9. FUTURE WORK

To best maximize the performance of the “Cube3” workload some

additional techniques need to be implemented to maximize the performance

of the matrix-vector loop kernel. The techniques need to focus on alleviating

some of the data dependency within the loop so that more parallelism can be

extracted allowing more instructions to be executed in parallel. This can be

achieved by performing studies only on the loop-kernel, alleviating a lot of

time involved with compiling and running “Cube3.” Some future research on

the Icc compiler is needed to see if it is implementing software pipelining

correctly, which could possibly improve this loop kernel. Also, the proposal of

additional hardware/software techniques can maybe improve the performance

as well.

Once the performance of the matrix-vector multiply has been

improved, then the architecture of the Itanium 2 needs to be re-studied to

determine how “Cube3” performs because as of now the Itanium 2

architecture has not been stressed in any of the studies conducted. Also by

running a workload of a dense matrix (all nonzeros) of different sizes can give

more incite to the performance of the cache hierarchy and what problem size

in terms of non-zeros in the matrix to choose to study the architecture to its

fullest capability.

 In addition to this performance analysis and future performance

analysis studies, an analytic model needs to be implemented to help in the

 81

multi-processor analytic model used by Sandia National Laboratories which

could have parameters based on the performance of a matrix-vector multiply

and the techniques that the architecture implements to maximize the

parallelism because this tends to be the most relevant performance loss as a

whole.

APPENDIX

Problem Size Variation Graphs –CRS

 83

 84

 85

Problem Shape Variation Graphs –CRS

 86

 87

VBR – Statistics/Graphs

VBR Instruction Mix

0%

10%

20%

30%

40%

50%

60%

70%

1x45000x1
55x55x1
300x1x1

1x45000x1 15.667% 6.091% 16.239% 1.090% 60.913%

55x55x1 16.207% 5.905% 16.081% 1.419% 60.387%

300x1x1 15.084% 10.394% 15.151% 0.609% 58.762%

Loads Stores Branches Floating Point Other

Cache Statistics
Vbr w01_d45000_dof1 w55_d55_dof1 w300_d01_dof1

L1I miss rate 4.15% 4.21% 1.89%
L1I prefetch miss rate 20.28% 21.14% 21.06%
L1D miss rate 7.60% 8.98% 10.58%

L2 miss rate 3.19% 4.81% 4.60%
L2D miss rate 3.47% 5.23% 4.63%
L2I miss rate 0.15% 0.18% 1.93%

L3 miss rate 96.79% 89.38% 33.34%
L3D miss rate 97.34% 89.88% 31.59%
Cycles/L2 data miss 395.28 303.00 183.99
Cycles/L3 data miss 398.62 330.55 543.37

 88

 89

 90

 91

 92

REFERENCES

[1] “Supercomputer Top 500,” [online document], 2004 Nov. 1, [accessed
2004 Feb 26], Available HTTP:
http://www.top500.org/lists/plists.php?Y=2004&M=11

[2] J. Pfeiffer, “The Memory Hierarchy,” [online document], 2005 Apr. 1,

[accessed 2005 May 10], Available HTTP:
http://www.cs.nmsu.edu/~pfeiffer/classes/473/notes/memhierarchy.html

[3] G. Griem, et al. , “Identifying Performance Bottlenecks on Modern

Microarchitectures using an Adaptable Probe”, in Proceedings Parallel
and Distributed Processing Symposium “04, 2004, pp. 255.

[4] Cameron McNairy and Don Soltis, “Itanium 2 Processor

Microarchitecture,” IEEE Micro, vol. 23, issue 2, pp 44-55, 2003

[5] “Itanium 2 Reference Manual for Software Development and

Optimization,” [online document], 2004 May 1, [accessed 2004 June
10], Available HTTP:
http://www.intel.com/design/itanium2/manuals/251110.htm

[6] “HP PERFMON,” [online document], 2004 Jan. 1, [accessed 2004 Feb

10], Available HTTP: http://www.hpl.hp.com/research/linux/perfmon/

[7] “Intel Vtune,” [online document], 2005 Jan. 1, [accessed 2005 Mar 1],

Available HTTP: http://www.intel.com/software/products/vtune/

[8] M. A. Heroux, et al., “An overview of Trilinos,” Technical Report

SAND2003-2927, Sandia National Laboratories, 2003.

[9] M. A. Heroux, M. Sala, and D. Day, “Trilinos 4.0 tutorial,” Technical

Report SAND2005-6335, Sandia National Laboratories, 2004.

[10] M. A. Heroux, “Trilinos Overview,” Proceedings of the Eighth Copper

Mountain Conference on Iterative Methods, Copper Mountain, CO.,
March 28 – April 2, 2004

[11] M. A. Heroux and J. M. Willenbring, “Trilinos Users Guide,” Technical

Report SAND2003-2952, Sandia National Laboratories, 2003.

[12] G. P. Nikishkov, “Introduction to the Finite Element Method,” [online

document], 2004 Jan. 1, [accessed 2005 Mar 15], Available HTTP:
http://www.u-aizu.ac.jp/~niki/feminstr/introfem/introfem.html

http://www.top500.org/lists/plists.php?Y=2004&M=11
http://www.cs.nmsu.edu/%7Epfeiffer/classes/473/notes/memhierarchy.html
http://www.intel.com/design/itanium2/manuals/251110.htm
http://www.hpl.hp.com/research/linux/perfmon/
http://www.intel.com/software/products/vtune/
http://www.u-aizu.ac.jp/%7Eniki/feminstr/introfem/introfem.html

 93

[13] Y. Saad, Iterative Methods for Sparse Linear Systems, [online
document], 1st edition, 1996, [accessed 2005 Feb 10], Available HTTP:
http://www-users.cs.umn.edu/~saad/books.html

[14] O. Ural, Finite Element Method: Basic Concepts and Applications, New

York, Intext Educational Publishers, 1973

[15] D. J. Dawe, Matrix and Finite Element Displacement Analysis of

Structures, New York, Oxford University Press, 1984

[16] N. M. Baran, Finite Element Analysis on Microcomputers, New York,

McGraw-Hill Book Company, 1988

[17] M. A. Heroux “AztecOO users guide,” [online document], Technical

Report SAND2004-3796, 2004 July 1, [accessed 2005 Mar 30],
Available HTTP:
http://software.sandia.gov/Trilinos/packages/aztecoo/AztecOOUserGuid
e.pdf

[18] “Sparse Matrix Storage schemes,” [online document], 2003 Jan. 1,

[accessed 2005 March 17], Available HTTP:
http://www.sun.com/products-n-solutions/hardware/docs/html/817-
0086-10/prog-sparse-support.html

[19] V. E. Taylor, “Sparse Matrix Computations: Implications for Cache

Designs,” in Proceedings of the 1992 ACM/IEEE conference on
Supercomputing, December 1992.

[20] O. Temam, W. Jalby, “Characterizing the Behavior of Sparse

Algorithms on Caches,” Proceedings of the 1992 ACM/IEEE conference
on Supercomputing, December 1992.

[21] L.M. Napolitano Jr., “A Computer Architecture for Dynamic Finite

Element Analysis,” in Proceedings of the 13th annual international
symposium on Computer Architecture, 1986.

[22] M. W. Berry, “Scientific Workload Characterization by Loop-Based

Analysis,” ACM SIGMETRICS Performance Evaluation Review, vol. 19,
issue 3, 1992, pp. 17-29

[23] M. Christon, “A Vectorized 3-D Finite Element Model for Transient

Simulation of Two-Phase Heat Transport with Phase Transformation
and a Moving Interface,” in Proceedings Supercomputing ‘90, 1990, pp.
436-445.

http://www-users.cs.umn.edu/%7Esaad/books.html
http://software.sandia.gov/Trilinos/packages/aztecoo/AztecOOUserGuide.pdf
http://software.sandia.gov/Trilinos/packages/aztecoo/AztecOOUserGuide.pdf
http://www.sun.com/products-n-solutions/hardware/docs/html/817-0086-10/prog-sparse-support.html
http://www.sun.com/products-n-solutions/hardware/docs/html/817-0086-10/prog-sparse-support.html

 94

[24] V. E. Taylor and A. Ranade, “Three-Dimensional Finite-Element
Analyses: Implications for Computer Architectures,” in Proceedings
Supercomputer ‘91, 1991, pp. 786-795.

[25] R. Vuduc, et al. , “Performance Optimizations and Bounds for Sparse

Matrix-Vector Multiply,” in Proceedings Supercomputing ‘02, 2002, pp.
26

[26] A. Purkayastha, et al. , “Performance Characteristics of Dual-Processor

HPC Cluster Nodes Based on 64-bit Commodity Processors,” [online
document], 2004 Jan. 1, [accessed 2005 May 10], Available HTTP:
http://www.tacc.utexas.edu/publications/performancehpcclusternodes.p
df

[27] D. Bradley, et al., “Supercomputer Workload Decomposition and

Analysis,” In Proceedings Supercomputing ‘91, 1991, pp. 458-467.

[28] Alan Williams, “Cube3 Description,” unpublished article, 2004

[29] Severe Jarp, “A Methodology for using Itanium 2 Performance Counters

for Bottleneck Analysis,” [online document], 2002 Jan. 1, [accessed
2004 Mar 20], Available HTTP:
http://www.gelato.org/pdf/Performance_counters_final.pdf

[30] Severe Jarp, “Searching for optimal performance on PF/Linux,” [online

document], 2002 Jan. 1, [accessed 2005 May 20], Available HTTP:
http://www.gelato.org/pdf/Compiler_options_final.pdf

http://www.tacc.utexas.edu/publications/performancehpcclusternodes.pdf
http://www.tacc.utexas.edu/publications/performancehpcclusternodes.pdf
http://www.gelato.org/pdf/Performance_counters_final.pdf
http://www.gelato.org/pdf/Compiler_options_final.pdf

